Large Hadron Collider restarts
Monday 25 April 2022
25th April 2022. CERN press release
The
world’s largest and most powerful particle accelerator has restarted
after a break of more than three years for maintenance, consolidation
and upgrade work. Today, 22 April, at 12:16 CEST, two beams of
protons circulated in opposite directions around the Large Hadron Collider’s 27-kilometre ring at their injection energy of 450 billion electronvolts (450 GeV).
“These
beams circulated at injection energy and contained a relatively small
number of protons. High-intensity, high-energy collisions are a couple
of months away,” says the Head of CERN’s Beams department, Rhodri Jones.
“But first beams represent the successful restart of the accelerator
after all the hard work of the long shutdown.”
“The
machines and facilities underwent major upgrades during the second long
shutdown of CERN’s accelerator complex,” says CERN’s Director for
Accelerators and Technology, Mike Lamont. “The LHC itself has undergone
an extensive consolidation programme and will now operate at an even
higher energy and, thanks to major improvements in the injector complex,
it will deliver significantly more data to the upgraded LHC
experiments.”
Pilot
beams circulated in the LHC for a brief period in October 2021.
However, the beams that circulated today mark not only the end of the
second long shutdown for the LHC but also the beginning of preparations
for four years of physics-data taking, which is expected to start this
summer.
Until
then, LHC experts will work around the clock to progressively
recommission the machine and safely ramp up the energy and intensity of
the beams before delivering collisions to the experiments at a record
energy of 13.6 trillion electronvolts (13.6 TeV).
This third run of the LHC, called Run 3, will see the machine’s experiments collecting data from collisions not only at a record energy but also in unparalleled numbers. The ATLAS and CMS experiments can each expect to receive more collisions during this physics run than in the two previous physics runs combined, while LHCb,
which underwent a complete revamp during the shutdown, can hope to see
its collision count increase by a factor of three. Meanwhile, ALICE, a
specialised detector for studying heavy-ion collisions, can expect a
fifty times increase in the total number of recorded ion collisions,
thanks to the recent completion of a major upgrade.
The unprecedented number of collisions will allow international teams of physicists at CERN and across the world to study the Higgs boson in great detail and put the Standard Model of particle physics and its various extensions to the most stringent tests yet.
Other things to look forward to in Run 3 include the operation of two new experiments, FASER and SND@LHC, designed to look for physics beyond the Standard Model; special proton–helium collisions to measure how
often the antimatter counterparts of protons are produced in these
collisions; and collisions involving oxygen ions that will improve
physicists’ knowledge of cosmic-ray physics and the quark–gluon plasma, a state of matter that existed shortly after the Big Bang.
Videos:
Photos:
Media kit:
|