New type of star gives clues to mysterious origin of magnetars
Friday 18 August 2023

Artist’s impression of HD 45166, the star that might become a magnetar - © ESO
Magnetars are the strongest magnets in
the Universe. These super-dense dead stars with ultra-strong magnetic
fields can be found all over our galaxy but astronomers don’t know
exactly how they form. Now, using multiple telescopes around the world,
including European Southern Observatory (ESO) facilities, researchers
have uncovered a living star that is likely to become a magnetar. This
finding marks the discovery of a new type of astronomical object —
massive magnetic helium stars — and sheds light on the origin of
magnetars.
Despite having been observed for over 100 years, the
enigmatic nature of the star HD 45166 could not be easily explained by
conventional models, and little was known about it beyond the fact that
it is one of a pair of stars [1], is rich in helium and is a few times more massive than our Sun.
“This star became a bit of an obsession of mine,”
says Tomer Shenar, the lead author of a study on this object published
today in Science and an astronomer at the University of Amsterdam, the
Netherlands. “Tomer and I refer to HD 45166 as the ‘zombie star’,” says co-author and ESO astronomer Julia Bodensteiner, based in Germany. “This is not only because this star is so unique, but also because I jokingly said that it turns Tomer into a zombie."
Having studied similar helium-rich stars before, Shenar
thought magnetic fields could crack the case. Indeed, magnetic fields
are known to influence the behaviour of stars and could explain why
traditional models failed to describe HD 45166, which is located about
3000 light-years away in the constellation Monoceros. “I remember having a Eureka moment while reading the literature: ‘What if the star is magnetic?’,” says Shenar, who is currently based at the Centre for Astrobiology in Madrid, Spain.
Shenar and his team set out to study the star using
multiple facilities around the globe. The main observations were
conducted in February 2022 using an instrument on the
Canada-France-Hawaii Telescope that can detect and measure magnetic
fields. The team also relied on key archive data taken with the
Fiber-fed Extended Range Optical Spectrograph (FEROS) at ESO’s La Silla Observatory in Chile.
Once the observations were in, Shenar asked co-author Gregg
Wade, an expert on magnetic fields in stars at the Royal Military
College of Canada, to examine the data. Wade’s response confirmed
Shenar’s hunch: “Well my friend, whatever this thing is — it is definitely magnetic.”
Shenar's team had found that the star has an incredibly strong magnetic field, of 43 000 gauss, making HD 45166 the most magnetic massive star found to date [2]. “The entire surface of the helium star has a magnetic field almost 100,000 times stronger than Earth's,” explains co-author Pablo Marchant, an astronomer at KU Leuven’s Institute of Astronomy in Belgium [see edit].
This observation marks the discovery of the very first massive magnetic helium star. “It is exciting to uncover a new type of astronomical object,” says Shenar, ”especially when it’s been hiding in plain sight all along.”
Moreover, it provides clues to the origin of magnetars,
compact dead stars laced with magnetic fields at least a billion times
stronger than the one in HD 45166. The team’s calculations suggest that
this star will end its life as a magnetar. As it collapses under its own
gravity, its magnetic field will strengthen, and the star will
eventually become a very compact core with a magnetic field of around
100 trillion gauss [3] — the most powerful type of magnet in the Universe.
Shenar and his team also found that HD 45166 has a mass
smaller than previously reported, around twice the mass of the Sun, and
that its stellar pair orbits at a far larger distance than believed
before. Furthermore, their research indicates that HD 45166 formed
through the merger of two smaller helium-rich stars. “Our findings completely reshape our understanding of HD 45166,” concludes Bodensteiner.
Edit [17 August]: the quote by Pablo Marchant was
changed since a unit conversion mistake led to the previous version
being incorrect.
Notes[1] While HD 45166 is a binary system, in this text HD 45166 refers to the helium-rich star, not to both stars.
[2] The magnetic field of 43 000 gauss is the strongest magnetic field ever detected in a star that exceeds the Chandrasekhar mass limit, which is the critical limit above which stars may collapse into neutron stars (magnetars are a type of neutron star).
[3] In this text, a billion refers to one followed by nine zeros and a trillion refers to one followed by 12 zeros.
|